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Abstract: The authors present a new geoid modeling procedure that can greatly improve relative geoid accuracy in mountainous areas, lead-
ing to improved applications for modern geodetic techniques, such as light detection and ranging (LIDAR), in mapping orthometric heights
over steep terrain on which precise slopes are needed to assess the risk of landslides and the suitability of industrial development. The new pro-
cedure (1) measures gravity gradients or computing modeled gravity gradients from a regular grid of gravity anomalies, (2) uses these gra-
dients to refine gravity anomalies, and (3) uses the gravity anomalies to compute geoidal undulations. This new procedure was tested in
Taiwan. In situ gravity gradients were measured at approximately 4,000 gravity sites to compare the modeled gravity gradients. In the test,
ground gravity observations are reduced to gravity anomalies at mean sea surface using three types of gravity gradients: normal, modeled, and
observed. The researchers’ geoid modeling uses the method of least-squares collocation (LSC) with the remove-compute-restore (RCR) pro-
cedure. Free-air gravity anomalies, as reduced using the observed and modeled gravity gradients, deviate from those using normal gradients
by up to 100 mgal in high mountains. Using free-air gravity anomalies derived from observed and modeled gravity gradients, the authors can
improve the relative geoid accuracies by up to 17 and 18 cm, respectively, for Route 3 (an area with high mountains) in Taiwan. DOI:
10.1061/(ASCE)SU.1943-5428.0000212.© 2016 American Society of Civil Engineers.
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Introduction

Deriving an accurate geoid model over complex topography is chal-
lenging. One place with a rough topography is Taiwan, which was
created by the collision of the Eurasian Plate and the Philippine Sea
Plate. The collision of the two plates has resulted in undulating foot-
hills and high mountains on the island of Taiwan and oceanic
trenches, ridges, and basins in the Pacific Ocean east of Taiwan.
Fig. 1(a) shows the free-air gravity anomalies obtained from land-
based, shipborne, and airborne gravity measurements, as well as
satellite altimetry (Hwang et al. 2014). The gravity field in Fig. 1(a)
is highly correlated with the terrain and represents the most up-to-
date and comprehensive gravity field for the island of Taiwan and
its surrounding seas. The gravity field has been used to determine a
geoid model of Taiwan with accuracies ranging from the centimeter
scale in plains to the decimeter scale in high mountains (Hwang
et al. 2013). For modern geodetic techniques, such as airborne
LIDAR, which has a decimeter-scale accuracy in measured heights
(Hodgson and Bresnahan 2004), a geoid model with an equivalent
accuracy is important for the techniques to derive useful orthomet-
ric heights. Decimeter-scale orthometric heights are also important

for assessing the risk of landslides and the suitability of residential
construction, both of which are primarily based on the slope of the
terrain.

Typically, ground gravity measurements are reduced to grav-
ity anomalies using the normal gradient of −0.3086 mgal/m
(Heiskanen and Moritz 1967). If the true gradient deviates from
this normal value, errors in the gravity anomalies based on this
value will be proportional to the elevation. As such, use of the
normal gradient can lead to large errors in modeled geoidal undu-
lations in high mountains, hindering techniques, such as LIDAR,
from mapping decimeter-level orthometric heights.

There are a number of studies on the modeling and application
of gravity gradients. Rapp and Pavlis (1990) used a second-order
normal gradient to improve gravity reduction with elevation. Rozsa
and Toth (2003) predicted gravity gradients using gravity and eleva-
tion data in Sóskút, Hungary. Tenzer and Ellmann (2007) used a
mean gravity gradient for gravity reduction in the Canadian Rocky
Mountains. Zhu and Jekeli (2009) combined airborne gradiometric
data, ground gravity anomaly data, and a digital elevation model to
model a gravity gradient field in Parkfield, California. Vanicek et al.
(2000) used downward continuation to determine a mean gravity
gradient, which was subsequently applied to geoid modeling in the
Rocky Mountains. Furthermore, Völgyesi (2001) computed a geoid
model in Cegl�ed, Hungary, using gravity gradient data. These stud-
ies conclude that the use of modeled gradients, instead of the normal
gradient, can improve gravity field modeling. In these studies, the
modeled gravity gradients were not validated by in situ gravity gra-
dient measurements, and there is no investigation of the model
improvement due to the use of nonnormal gravity gradients in con-
nection to elevation. From 2006 to 2010, new land-based gravity
values were measured at approximately 4,000 sites on the island of
Taiwan and its offshore islands. The gravity gradients were also
measured at the gravity sites. Although the new gravity values have
contributed to a high-resolution gravity grid in Taiwan (Hwang
et al. 2014), the gradient measurements have not been used to aid
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geoid modeling or to assess gradients that are based on models. In
this study, the authors compute modeled gravity gradients and
explore the potential of newly observed gradient measurements in
improved gravity reduction and geoid modeling. Specifically, the
deviations of the normal gradient (−0.3086 mgal/m) from the
observed or modeled gradients in terms of height and location
will be investigated. The gravity and geoid results from the
observed and modeled gravity gradients will be compared with
those based on the normal gradient. Depending on the availability
of observed gravity gradients, the authors propose a new proce-
dure of geoid modeling that can greatly improve relative geoid ac-
curacy in high mountains.

In this paper, the authors do not model the second-order effect
in gravity reduction or discuss the role of the normal gradient in
the Molodensky method of geoid modeling. Instead, the authors
emphasize the use of observed gravity gradients to improve geoid
model accuracy in a method that has been used in previous works
(Forsberg and Sideris 1993; Hwang et al. 2007).

Gravity Gradients in Taiwan: Observed andModeled

Gravity Gradients fromObservations

From 2006 to 2010, relative gravity measurements were made at
approximately 4,000 gravity sites (the red dots in Fig. 2) in Taiwan
using Graviton-EG relative gravimeters (LaCoste & Romberg, Inc.,
Austin, Texas). The temporal effects of solid earth tide, ocean tide,
pressure change, and polar motionwere removed from the raw gravity
measurements. By fixing the absolute gravity values at 10 sites, the
researchers performed a rigorous network adjustment (Hwang et al.
2002) to determine the gravity values at all 4,000 sites. The network
adjustment yields an averaged standard deviation of 0.035 mgal for
the adjusted point gravity values. Each gravity site was marked with a
pillar, and three gravity readings at 0.0, 0.5, and 1.5 m above the pillar
were made using a tripod-held plate. The sample photos in Fig. 2

show the different types of tripod-held plates used in the fieldwork.
The researchers then computed the differences between the gravity
values at the three different heights, resulting in three gravity gra-
dients. The final gravity gradient for the site is the mean of the three
gravity gradients. A gravity gradient was computed as

t ¼ g1 � g2
Dh

(1)

where g1 and g2 are gravity readings at different heights above the
pillar; and Dh = height difference. According to error propagation,
the accuracy of the gravity gradient s t is

s t ¼
ffiffiffi
2

p sg

Dh
(2)

where s g = resolution of the Graviton-EG gravimeter, which is
1 mgal (Hwang et al. 2010). If Dh ¼ 1 m, s t = 0.0014 mgal/m,
which is the typical accuracy of the observed gravity gradient.
When performing absolute gravity measurements at a site, such
gravity gradients are also used in reducing absolute gravity values
from a point above the pillar (typically associated with the instru-
ment height) to the pillar.

Modeled Gravity Gradients fromGravity Anomalies by
Integration

In addition to the observed gradients, the authors also modeled
gravity gradients as follows. If gP is the observed gravity value at
Point P on the ground, the corresponding value g0P on the geoid can
be computed (Heiskanen andMoritz 1967)

g0P ¼ gP � ∂g
∂H

� �
HP (3)

where HP = orthometric height at P; and ∂g=∂H = actual gravity
gradient. The term ∂g=∂H can be split into the normal gravity

Fig. 1. (Color) (a) Free-air gravity anomaly (data from Hwang et al. 2014) and terrain; (b) earlier land-based gravity data; (c) airborne gravity data
over Taiwan (Note: Neither the earlier land-based nor the airborne gravity estimates were used for geoid modeling in this study)
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gradient ∂g=∂h and the gravity anomaly gradient ∂Dg=∂h
(Heiskanen andMoritz 1967). As such, Eq. (3) can be expressed as

g0P ¼ gP � ∂g
∂H

þ ∂Dg
∂H

� �
HP (4)

The term ∂Dg=∂H at P is called the modeled gravity anomaly
gradient and can be computed by (Heiskanen andMoritz 1967)

∂DgP
∂H

¼ R2

2p

ðð
s

Dg� DgP
l30

ds � 2
R
DgP (5)

where DgP = gravity anomaly at P; Dg = gravity anomaly on the
unit sphere; R = Earth’s mean radius; l0 = spatial distance between
P and the variable unit; l0 = 2R sin c =2; c = angular distance; s =
unit sphere; and ds = differential element of the area. Hwang and
Hsiao (2003) proposed a method to compute ∂DgP=∂H by the
Gaussian quadrature integration (Gerald and Wheatley 1994) for
the purpose of rigorous orthometric corrections. In this paper, the
authors used the Gaussian quadrature method of Hwang and Hsiao
(2003) to compute modeled gravity gradients on a regular grid in
Taiwan using gravity anomalies fromHwang et al. (2014).

Assessing Modeled Gravity Gradients by Observations

In previous sections, the authors described the observed and
modeled gravity gradients in Taiwan. Fig. 3 compares the

observed gravity gradients and the modeled gravity gradients.
Histograms were inserted in Fig. 3 to show the distributions of
the kinds of gravity gradients and the differences between them.
The statistics of the gradients are summarized in Table 1.
Relatively large gravity gradients (absolute values) occurred in
high mountains with the maximum gradient reaching −0.34
mgal/m. Gravity gradients in the western plains of Taiwan are
smaller, ranging from −0.30 to −0.32 mgal/m (areas shaded by
green and blue in Fig. 3). The observed gravity gradients and
modeled gravity gradients, and the difference between the two,
have standard deviations of 0.0057, 0.0085, and 0.0070, respec-
tively, and mean values of −0.3115, −0.3078, and −0.0050 mgal/
m, respectively. The overall magnitude of the observed gradients
(absolute values) is larger than that of the modeled gradients.
The range of modeled gradients is larger than that of observed
gradients. Fig. 4 shows the correlation between the observed and
modeled gravity gradients. The slope from the linear regression
is 1.22, which is partially because the range of the modeled gra-
dients is larger than that of the observed ones. Furthermore, the
correlation coefficient (CC) is 0.82, which suggests that the two
are highly correlated.

The authors also investigated the relationships among gravity
gradients, orthometric heights, and the free-air gravity anomalies at
every gravity site. Fig. 5 shows the correlations for various pairs.
The CCs range from −0.54 to −0.64 [Figs. 5 (a–d)]. In addition, the
CC (−0.62) in Fig. 5(a) is very close to the one (−0.64) in Fig. 5(b).
Furthermore, the CC (−0.54) in Fig. 5(c) is the same as the one in
Fig. 5(d). Therefore, the CCs between the gravity gradient and

Fig. 2. (Color) Distributions of new land-based gravity data (red), altimeter-derived gravity data of Sandwell V23.1 (blue), and shipborne gravity
data fromNOAA and NLSC (green); the photographs show how a gravity gradient is observed bymeasuring gravity values with a tripod
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orthometric height are almost consistent with the ones between the
gravity gradient and the free-air gravity anomaly. These high CCs
(absolute values) show that rock densities increase with elevation in
Taiwan. This is due to the mountain-building process that led to the
presence of denser materials in the highly mountainous areas of
Taiwan (Hwang and Hsiao 2003). The CC consistency indicates
that both the modeled and observed gravity gradients reflect this
density trend.

Although the modeled gravity gradients have more broadly dis-
tributed values than the observed ones, they show relatively lower
correlations with both orthometric height and the free-air gravity
anomaly than the observed gravity gradients. In addition, most
observed gravity gradients (absolute values) are larger than
0.3086 gal/m. In particular, the absolute values of gravity gradients
tend to increase with orthometric height and the free-air gravity
anomaly.

Fig. 3. (Color) (a) Observed gravity gradients; (b) modeled gravity gradients; (c) differences between observed and modeled gravity
gradients
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Using Gravity Gradients for Geoid Modeling: A New
Procedure

Using the modeled and observed gravity gradients, the authors
proposed a new procedure for geoid modeling. They experi-
mented with three cases of geoid modeling (Table 2): Cases 1–3
use the normal, observed, and modeled gravity gradients,
respectively, to reduce the observed gravity values on the ground
to the mean sea surface. The geoid modeling strategy in this
study is based on the remove-compute-restore (RCR) procedure
(Forsberg 1984; Hwang et al. 2007). In this procedure, a geoidal
undulation is split into the long-, intermediate-, and short-wave-
length parts as follows:

N ¼ Nlong þ Nint þ Nshort (6)

In accordance with this procedure, a gravity anomaly is
expressed as

Dg ¼ Dglong þ Dgint þ Dgshort (7)

where Nlong and Dglong are the long-wavelength geoid and gravity
anomaly, respectively; Nint and Dgint are the intermediate-wave-
length geoid and gravity anomaly, respectively; and Nshort and
Dgshort are the short-wavelength geoid and gravity anomaly, respec-
tively. In this study, the values Dglong and Nlong are both determined

from a global geopotential model; Dgshort and Nshort are derived by
the theory of residual terrain model (RTM) (Forsberg 1984) imple-
mented using the fast Fourier transform (FFT) technique; and Dgint
represents the remainder afterDglong andDgshort are subtracted from
the local gravity observations Dg. The value of Dgint is used to
determine Nint . Subsequently, Nlong and Nshort can be restored to
obtain the final geoid.

In this paper, the intermediate-wavelength component, Nint , is
computed from Dgint by least-squares collocation (LSC) (Moritz
1980)

s ¼ CslðCll þ DÞ�1l (8)

where s and l are vectors of signals and observations, respectively;
Cll is the covariance matrix of l; Csl is the covariance matrix
between s and l; and D is the covariance matrix of the noise con-
tained in vector l, which functions as a filter. In the context of this
paper, s, l, and D in Eq. (6) represent a geoidal undulation, gravity
anomaly, and the error variance of the gravity anomaly, respec-
tively. The terms Csl and Cll denote the covariance matrices for the
geoid-gravity anomaly and the gravity anomaly-gravity anomaly,
respectively. To construct the previously mentioned covariance
matrices, the authors adopted the error anomaly degree variances of
the EGM2008 geopotential model for up to 360 degrees (Pavlis
et al. 2008, 2012); for higher degrees, the authors adopted the
Tscherning-Rapp anomaly degree variance Model 4 (Tscherning
and Rapp 1974).

The distribution of the gravity anomalies used for geoid model-
ing in this paper is only shown in Fig. 2. Because the purpose of this
paper is to identify the improvement of geoid modeling by using
gravity gradients, the authors use the gravity data associated with
Fig. 2 rather than the latest combined gravity data set of Hwang et
al. (2014), which is based on earlier land-based [Fig. 1(b)], new
land-based (Fig. 2, red dots), shipborne (Fig. 2, green dots), airborne

Table 1. Statistics of Observed and Modeled Gravity Gradients (mgal/m)

Model Max Min Mean Standard deviation

Observed −0.2922 −0.3430 −0.3115 0.0057
Modeled −0.2779 −0.3494 −0.3078 0.0085
Observed-modeled 0.0317 −0.0349 −0.0050 0.0070

Fig. 4. (Color) Comparison of observed and modeled gravity gradients (Note: CC = correlation coefficient; M = slope of the linear regression line;
and dashed line = best fitting regression line withM = 1.0)
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[Fig. 1(c)], and altimeter-derived (Fig. 2, blue dots) gravity data. In
Fig. 2, the density of the land-based gravity data (red dots) in flat
areas is much higher than that in highly mountainous areas. The ear-
lier land-based gravity data [Fig. 1(b)] of Yen et al. (1990, 1998),
which were not used in this paper, were mostly collected in moun-
tainous areas. In addition, to fill the gaps in the ocean and coastal
regions, shipborne gravity data (Fig. 2, green dots) from the U.S.
National Oceanic and Atmospheric Administration (NOAA) (Hsu
et al. 1998) and Taiwan’s National Land Surveying and Mapping
Center (NLSC) (Hwang et al. 2013) and the gravity field of
Sandwell V23.1 (Fig. 2, blue dots) (Sandwell et al. 2014) were used
in this paper.

For the long-wavelength geoid and gravity components in Eqs.
(6) and (7), the authors adopted a combination of the GOCE-DIR
and EGM2008 gravity models extending to 360° and order 360:
below 240°, GOCE-DIR coefficients were used; for 241–360°,
EGM2008 coefficients were used. This 360° field corresponds to a
wavelength of 110 km. Compared with other versions of GOCE sol-
utions, the combined model using GOCE-DIR produces long-

wavelength (model-implied) gravity values that best match the
observed gravity values in Taiwan (Wu 2015).

To determine the short-wavelength components in Eqs. (6) and
(7), the researchers computed RTM gravity and geoid effects by
FFT using three digital elevation models (DEMs) that have three
separate spatial resolutions: 9� 9 arcsec, 90� 90 arcsec, and 6� 6
arcmin. The 6� 6-arcmin DEMwas used as themean elevation sur-
face (Forsberg 1984) and was used to generate the so-called residual
elevations relative to the 9� 9- and 90� 90-arcsec DEMs. The
9� 9- and 90� 90-arcsec DEMs were used for the inner and outer
zone computations, respectively. The choice of spatial resolution
for the three DEMswas based on Hsiao and Hwang (2010).

The previous descriptions in this section focus on the strategy
andmethod of the geoid computation. Here, the authors recommend
a new geoid modeling procedure using observed and modeled grav-
ity gradients in two scenarios:
1. Geoid modeling if observed gravity gradients are available:

• Use the observed gradients to reduce ground gravity obser-
vations to obtain new free-air gravity anomalies.

• Use the new gravity anomalies to determine the geoidal
undulations.

2. Geoid modeling if observed gravity gradients are not available:
• Use the normal gradient to reduce ground gravity observa-

tions to obtain initial free-air gravity anomalies.
• Combine the initial free-air gravity anomalies and a regu-

lar grid of free-air gravity anomalies to compute modeled
gravity gradients at the locations of gravity observations.

Fig. 5. (Color) Relationships among (a) observed gravity gradients and heights, (b) observed gravity gradients and free-air anomalies, (c) modeled
gravity gradients and heights, and (d) modeled gravity gradients and free-air anomalies (Note: The dashed red line represents the position of the gravity
gradient at −0.3086 mgal/m)

Table 2. Types of Gravity Gradients in the Three Case Models

Case Type of gravity gradients

1 Normal
2 Observed
3 Modeled

© ASCE 04016027-6 J. Surv. Eng.
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• Use the modeled gravity gradients to reduce ground grav-
ity observations to obtain new free-air gravity anomalies.

• Use the new gravity anomalies to determine geoidal
undulations.

In this study, the researchers computed the geoid undulations on
a 1� 1-arcmin grid over 119–123°E and 21–26°N.

Results

Gravity Anomalies from Normal, Observed, and Modeled
Gradients

Here, the authors show the impact on the gravity anomaly associ-
ated with using gravity gradients other than the normal gradient.
Fig. 6 shows gravity results with reductions using the normal gradi-
ent (Case 1), observed gradient (Cases 2), and modeled gradient
(Case 3) at the gravity sites in Fig. 2 (land values). Figs. 6(a–d)
show the gravity anomalies of Case 1 and the gravity anomaly dif-
ferences between Cases 1 and 2, Cases 1 and 3, and Cases 2 and 3,
respectively. The statistics of the differenced gravity anomalies are
summarized in Table 3. The results in Fig. 6 and Table 3 show that
(1) in certain parts of the highly mountainous areas, the gravity
anomaly differences can reach 40–100 mgal, and (2) in most parts
of the western plain, the gravity anomaly differences are small
(a fewmgal). The standard deviations of the gravity anomaly differ-
ences for Cases 1–2 and Cases 1–3 are 10.5 and 13.5 mgal, respec-
tively. These two standard deviations are both larger than the stand-
ard deviation (7.9 mgal) of Cases 2–3, which use modeled and
observed gradients rather than the normal gradient. The large differ-
ences in mountainous areas imply large differences in geoidal undu-
lations computed from gravity anomalies based on the normal gra-
dient andmodeled/observed gradients.

Geoid Models from Normal, Observed, and Modeled
Gradients

In the previous section, the authors noted the gravity differences
caused by using different gravity gradients in the gravity reduc-
tions. Here, the authors show the impact of the gravity gradient
on the geoid determination by using the three sets of gravity
anomalies associated with Fig. 6 and recommend a new proce-
dure for geoid modeling. Using the RCR steps, the authors deter-
mined three geoid models using the three sets of gravity anoma-
lies shown in Fig. 6 (Cases 1–3). Fig. 7 shows the geoid model
from Case 1. From visual inspections, the geoid models from
Cases 2 and 3 are similar to that in Fig. 7, so they are not shown
here. The general features of the three geoid models are (1) a dis-
tinct, circular low centered at 24°N and 122.8°E and (2) large ge-
oidal height values over the central highly mountainous areas
that reach almost 28 m.

The authors then assessed the accuracies of the three geoid mod-
els using observed geoidal undulations at 63 leveling benchmarks
in Taiwan. The researchers’ assessments focus on the impact of
using different gravity gradients. An observed geoidal undulation at
a benchmark is the difference between the ellipsoidal height (at 1-
to 2-cm accuracy) and the orthometric height (at a few millimeters
of accuracy). The former is obtained from 24-h Global Positioning
System (GPS) observations, and the latter is from precision level-
ing. The authors divided the leveling benchmarks into six routes
based on their locations [Fig. 8(a)]. The geographic and topographic
features of the six routes are as follows: northern coast (Route 1, 9
points), Longitudinal Valley (Route 6, 10 points), foothills (Route 2,
20 points) to high mountains (Route 3, 6 points), and plains (Route 5,

5 points) to high mountains (Route 4, 13 points). Fig. 8(b) shows the
elevations of these leveling benchmarks. The authors divided the
benchmarks into two groups, with elevations ranging from 2 to 600 m
(<900 m, gentle terrain) and from 933 to 2,500 m (>900 m, rough
terrain). There are 48 benchmarks at elevations<900 m and 15 at
elevations>900m. Tables 4 and 5 show the statistics of the differen-
ces (in meters) between the observed and modeled geoidal heights at
the benchmarks in Fig. 8(a). The differences are grouped according
to route (Table 4) and height (Table 5). In Table 4, the geoid model
in Case 1 shows geoid discrepancies on the order of several centi-
meters over moderate terrains (Routes 1, 2, 5, and 6) and 1.2–
2.4 decimeters over high mountains (Routes 3 and 4). Two potential
reasons for the degraded geoid accuracy over high mountains are (1)
poor gravity data coverage over these areas and (2) possible errors in
the gravity anomalies caused by the normal gradient. The geoid dis-
crepancies (based on the standard deviations in Tables 4 and 5) in
Cases 2 and 3 are close to the discrepancies in Case 1 for Routes 1,
2, 5, and 6 (at the centimeter level). This suggests that gravity
anomalies resulting from the normal or observed/modeled gravity
gradients will not cause significant geoidal differences over gentle
terrain. This conclusion is consistent with the fact that gravity
anomalies over gentle terrain are nearly the same, regardless of the
gravity gradient used (Fig. 6). However, compared with Case 1, the
geoid discrepancies along Route 3 show obvious improvements in
both Cases 2 and 3, and the ones along Route 4 show improvements
in Case 2. The use of observed (Case 2) and modeled (Case 3) grav-
ity gradients improves the relative geoid accuracy with respect to
Case 1 by 17 and 18 cm in Route 3, respectively, and the use of the
observed gravity gradients also improves the relative geoid accuracy
with respect to Case 1 by 8 cm in Route 4.

Table 5 is consistent with Table 4 in terms of the advantage of
using the observed gravity gradients. In Table 5, at elevations< 900 m
(gentle terrain), the respective mean and standard deviation of the
differences are −0.05 and 0.143 m in Case 1, 0.007 and 0.162 m in
Case 2, and 0.009 and 0.149 m in Case 3. At elevations>900 m
(rough terrain), the respective mean and standard deviation of the
differences are −0.019 and 0.119 m in Case 1, 0.474 and 0.057 m in
Case 2, and 0.483 and 0.133 m in Case 3. Compared with the stand-
ard deviations over moderate terrain (elevations<900 m), the
three geoid modeling statistical results are quite consistent, with
an average standard deviation of 14–16 cm. However, in moun-
tainous areas, the results from Case 2 are clearly superior to those
from Case 1, based on the smaller standard deviations. The
standard deviation of the differences in Case 2 is smaller than
that in Case 1 by almost 7 cm, whereas the standard deviation in
Case 3 is slightly larger. Case 3 has a slightly worse relative
geoid accuracy than Case 1 at elevations>900 m because most
leveling benchmarks over this area belong to Route 4, whereas
Case 3 provides less improvement to the relative geoid accura-
cies (Table 4).

Overall, in areas with hills and mountains (Routes 2 and 3),
the use of observed (Case 2) or modeled gravity gradients
(Case 3) can enhance the relative geoid accuracy. In areas with
only high mountains, in which elevations vary from 2,000 to
3,000 m (Route 4), only the use of the observed (Case 2) gravity
gradient offers a clear improvement in relative geoid accuracy.
The reason the relative geoid accuracy from modeled gravity gra-
dients (Case 3) is not as expected in areas with high mountains
may lie in the insufficient gravity data coverage. If dense gravity
anomaly data are available for these areas, modeled gravity gra-
dients may further improve the current relative geoid accuracy.

Although the relative geoid accuracy in Case 2 yields better
results compared with Cases 1 and 3, as reflected by the smallest
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Fig. 6. (Color) (a) Gravity anomalies from Case 1; differences in gravity anomalies from (b) Cases 1 and 2, (c) Cases 1 and 3, and (d) Cases 2 and 3
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standard deviations in Tables 4 and 5, the normal gradient (Case 1)
still yields the best results, as reflected by the smallest mean values
in Tables 4 and 5. The mean values in Cases 2 and 3 are much larger
than that in Case 1 due to the large geoidal differences resulting
from the use of the gravity anomalies. Figs. 9(a–c) show the differ-
ences between the geoidal heights between Cases 1 and 2, Cases 1
and 3, and Cases 2 and 3, respectively. The statistics of the differ-
enced geoidal heights are summarized in Table 6. These differences
are most prominent over rough terrain (elevation >900 m) and are
mainly caused by the very large gravity anomalies occurring in high
mountains in Cases 2 and 3, resulting in geoidal differences of up to
70 cm, as shown in Figs. 9(a and b). In Table 6, at elevations
<900 m (gentle terrain), the mean and standard deviation of the dif-
ferences between Cases 1 and 2 and between Cases 1 and 3 are

−0.047 and 0.072 m and −0.045 and 0.061 m, respectively.
However, at elevations >900 m (rough terrain), the values are
much larger than those at elevations<900 m. The mean and stand-
ard deviation of the differences between Cases 1 and 2 and between
Cases 1 and 3 reach −0.211 and 0.183 m and −0.210 and 0.171 m,
respectively. In addition, the geoidal height differences between
Cases 2 and 3 are relatively small at elevations both >900 m and
<900 m. Two possible reasons such large mean geoidal differences
occur over high mountains between Cases 2 and 3 are (1) the point
gravity data are sparse and (2) the observed gravity gradients (abso-
lute values) are relatively large in these areas (Fig. 3). In other
words, because the gravity data are sparse, the modeled geoidal
undulations are sensitive to changes in gravity values at these data
points. One possible method to overcome the large perturbation of
modeled geoidal heights is to collect more gravity values and grav-
ity gradients over the high mountains. Again, the authors emphasize
that the relative geoidal accuracy is improved by the use of
observed gradients over high mountains, and larger mean differ-
ences between the modeled and observed geoidal heights over
high mountains will be inconsequential when using a hybrid
geoid model that combines a gravity-only geoid model (such as
any of the models in this paper) with the observed geoidal heights
(such as the ones used to assess the gravity-only geoid models).

Fig. 7. (Color) Geoidal heights using gravity anomalies fromCase 1

Table 3. Statistics of the Gravity Anomaly Differences between Cases 1
and 2, Cases 1 and 3, and Cases 2 and 3

Model Max (mgal) Min (mgal) Mean (mgal) Standard deviation

Cases 1–2 5.2 −116.9 −3.1 10.5
Cases 1–3 37.4 −154.8 −2.2 13.0
Cases 2–3 55.1 −83.6 0.9 7.9
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Although the gravity anomalies with reduction using observed
or modeled gradients cause large geoidal differences in high moun-
tains, the relative accuracies of the geoidal heights using such gra-
dients are improved in these areas. In addition, the differences in ge-
oidal height between Cases 2 and 3 are smaller than those between

other cases; the maximum geoidal difference between Cases 2 and
3 reaches only 30 cm. The geoidal heights in Cases 2 and 3 are more
consistent because observed and modeled gradients are both closer
to the true gravity gradients than the normal gradients.

Although observed gravity gradients can improve geoid accu-
racy, it is not cost-effective to collect dense gravity gradients to
improve geoid accuracy. As a compromise, modeled gravity gra-
dients are an alternative. In conclusion, given sufficient financial
resources for geoid modeling in high mountains, measured gravity
gradients are preferred. Otherwise, modeled gradients should be
used to maximize the local geoid accuracy.

Conclusions

This paper shows gravity reductions using observed and modeled
gravity gradients to improve relative geoid accuracies over parts

Fig. 8. (Color) (a) Distributions of six leveling routes for assessing geoid models, with the new land-based gravity data distribution (black dots) as the
background (Fig. 2), and (b) elevations of the leveling benchmarks (Note: White and gray vertical bars correspond to spots in which the elevations are
>900 or<900 m, respectively)

Table 4. Statistics of Differences between the Observed and Modeled
Geoidal Heights at the Test Points (Divided by Route)

Geoid
model

Route
number

Max
(m)

Min
(m)

Mean
(m)

Standard
deviation

Case 1 1 0.060 −0.176 −0.034 0.090
2 0.174 −0.250 −0.133 0.108
3 0.437 −0.162 0.138 0.240
4 0.120 −0.194 −0.004 0.121
5 0.013 −0.208 −0.068 0.083
6 0.018 −0.070 −0.017 0.029

Case 2 1 0.073 −0.132 −0.014 0.079
2 0.194 −0.245 −0.072 0.112
3 0.593 0.394 0.471 0.076
4 0.516 0.383 0.461 0.048
5 0.017 −0.212 −0.073 0.084
6 0.176 −0.018 0.057 0.055

Case 3 1 0.084 −0.132 −0.017 0.077
2 0.177 −0.228 −0.065 0.103
3 0.439 0.273 0.363 0.062
4 0.675 0.332 0.508 0.124
5 0.025 −0.206 −0.065 0.085
6 0.147 0.005 0.072 0.044

Table 5. Statistics of Differences between the Observed and Modeled
Geoidal Heights at the Test Points (Divided by Height)

Geoid
model

Area for statistics
[E (m)]

Max
(m)

Min
(m)

Mean
(m)

Standard
deviation

Case 1 <900 0.437 −0.250 −0.050 0.143
>900 0.120 −0.194 −0.019 0.119

Case 2 <900 0.459 −0.245 0.007 0.162
>900 0.593 0.383 0.474 0.057

Case 3 <900 0.439 −0.228 0.009 0.149
>900 0.675 0.273 0.483 0.133
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of mountainous areas in Taiwan. In this paper, the authors do not
intend to claim that the use of observed or modeled gradients can
offset the need of dense gravity data. Instead, the authors show
that such gradients can improve the relative geoid accuracies
without adding extra gravity data (Tables 4 and 5). The results
imply that one can also collect gravity gradients (in addition to
gravity values) during a gravity campaign to add extra observa-
tions for an improved geoid. If it is not possible to obtain
observed gravity gradients, modeled gravity gradients are an al-
ternative. However, in mountainous areas, gravity data can be
sparse due to inaccessible terrain, causing the integration in Eq.
(5) to fail to produce reliable modeled gradients. In other words,
the accuracy of a modeled gradient at a site can be poor if the
gravity data surrounding the site are sparse, thus requiring obser-
vation of the gravity gradient.

Next, the authors summarize the key points of this paper:
1. The researchers computed new gravity anomalies using the

observed and modeled gravity gradients at more than 4,000

gravity sites. These gravity anomalies have led to an improved
geoid model for Taiwan.

2. The use of new gravity anomalies with reductions by observed
or modeled gravity gradients can improve the relative geoid ac-
curacy by up to 18 cm.

3. If resources are available in a local geoid modeling project over
rough terrain, gravity gradients should be measured to produce
the best local geoid model.
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